Overview of Neuromorphic Computing: Challenges and Opportunities by Sakib Hasan, PhD

We support #IEEE in many ways. Here’s a recording of a recent talk. ORI volunteers helped with logistics and audio/visual expertise.

youtu.be/fSOpdgQXI…

21 March 2023 Overview of Neuromorphic Computing Challenges and Opportunities by Sakib Hasan PhD

Dr. Hasan explains, “#Neuromorphic #Computing promises orders of magnitude improvement in energy efficiency compared to the traditional von Neumann computing paradigm. The goal is to develop an adaptive, fault-tolerant, low-footprint, fast, low-energy intelligent system by learning and emulating brain functionality which can be realized through innovation in different abstraction layers including material, device, circuit, architecture, and algorithm. As the energy consumption in complex machine learning tasks keeps increasing exponentially due to larger data sets and resource-constrained edge devices becoming increasingly ubiquitous, neuromorphic computing approaches can be a viable alternative to a deep convolutional neural network that is dominating the field today. In this talk, I introduce neuromorphic computing, outline a few representative examples from different layers of the design stack (devices, circuits, and algorithms) and conclude with a few important challenges and opportunities in this field.”

Open Research Institute @OpenResearchIns